
Language Support for the Specification and
Development of Composite Systems

MARTIN S. FEATHER
.USC/lnformation Sciences Institute

When a complex system is to be realized as a combination of interacting components, development
of those components should commence from a specification of the behavior required of the composite
system. A separate specification should be used to describe the decomposition of that system into
components The first phase of implementation from a specification in this style is the derivation of
the individual component behaviors implied by these specifications.

The virtues of this approach to specification are expounded, and specification language features
that are supportive of it are presented. It is shown how these are incorporated in the specification
language Gist, which our group has developed. These issues are illustrated in a development of a
controller for elevators serving passengers in a multistory building.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications-
languages; methodologies; D.3.1 [Programming Languages]: Formal Definitions and Theory-
semantics; D.3.2 [Programming Languages]: Language Classifications-uety high-duel languages;
D.3.3 [Programming Languages]: Language Constructs, F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Programs-specification techniques

General Terms: Design, Languages, Theory, Verification

Additional Key Words and Phrases: Composite systems, distributed decomposition, interactive
systems

1. INTRODUCTION

There is a growing consensus that, in order to achieve major improvement in
software production and maintenance, the entire programming process must be
formalized and given machine support (see, for example, the joint report of
several researchers [7]). The keystone of such an approach is the formal specifi-
cation of the requirements of the task to be programmed. Our specification group

This research was supported in part by the NSF under contract MCS-7918792, and in part by the
Defense Advanced Research Projects Agency under contract MDA903 81 C 0335. Views and conclu-
sions contained in this document are those of the author and should not be interpreted as representing
the official opinion or policy of DARPA, the NSF, the U.S. Government, or any other person or
agency connected with them.
Author’s address: USC/Information Sciences Institute, 4676 Admiralty Way, Marina de1 Rey, CA
90292.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0164-0925/87/0400-0198 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987, Pages 198-234.

Language Support for Composite Systems l 199

at ISI’ has pursued this philosophy in developing a specification language and
companion techniques to support the transformational derivation of implemen-
tations from specifications. Our views and techniques are elaborated and defended
elsewhere [11.

The focus here is the specification and development of composite systems, by
which I mean systems whose realization will be multiple interacting components.
The software development task may be to implement one or several of these
components. The remaining components of the system form the implementation’s
environment, and might consist of other software systems, physical machinery,
human beings, and so on.

A specification should be a lucid description of a task or activity. Its lucid
nature derives from an emphasis on a natural description of the task, without
regard for implementation concerns. Hence, when a complex system is to be
realized as a combination of interacting components, development of those
components should commence from a specification of the whole system. To be
natural and lucid, such a specification should be of the behavior required of that
composite system. The decomposition of that system into components should be
specified separately. These specifications disregard the implementation concern
of how to allocate behaviors to each of the components so that their combination
will realize the composite system.

We call this style of specification closed-system specification, to emphasize
that the specification of the composite system is self-contained, that is, closed,
in that there is no interaction with anything outside of the specification. In
contrast, a specification that has an interface to some unspecified environment
would be “open.”

The ensuing sections present the following:

-The benefits of the closed-system style of specification and its role in the
software development process.

-Some specification language features that are supportive of the closed-system
style of specification; these features have been embodied in our specification
language, Gist.

-Additional specification language features that formalize the intuitive notions
of “choice” and “responsibility,” of use in expressing closed-system specifica-
tions and stages in developments from closed to open specifications. It is shown
how Gist could be extended to include these features.

-A lengthy example to illustrate the above concepts put to use.
-Related research and conclusions.

2. ELABORATION OF THE CLOSED-SYSTEM STYLE OF SPECIFICATION

Specification of a composite system is divided into a specification of the behavior
required of that composite system and a specification of how that system is to be
decomposed into components. For example, consider the scenario of elevators

1 Headed by B. Balzer, and currently including D. Cohen, M. Feather, N. Goldman, L. Johnson,
B. Swartout, D. Wile, and K. Yue. Former members who have made significant contributions to this
research are W. Chiu, L. Erman, S. Fickas, P. London, and J. Mostow.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

200 l Martin S. Feather

serving passengers in a multistory building. The components are the individual
passengers, the elevator controller, and the elevator mechanism. The behavior
required of this composite system is the rapid transportation of passengers to
their destination floors. Decomposition defines what interaction is allowed be-
tween these components, for example, the controller may be allowed to issue
start/stop commands to the elevator motors, thus causing movement of elevators;
passengers may be allowed to signal to the controller their presence at a floor
and their desire to be transported in some direction.

The potential benefits of this style of specification and some of its implications
for the subsequent implementation effort are discussed in the sections that
follow.

2.1 Potential Benefits of Closed-System Specification

2.1.1 Explicit Description of a Whole System. Contrast the closed-system style
of specification, in which the whole system is specified explicitly, to the open
style, in which a single component interacts through some interface with an
environment that is not explicitly specified. In the former, the full power and
richness of the specification language can be used to describe the assumptions
that the component to be implemented may make regarding its environment. In
the latter, those assumptions must be expressed as part of the interface, the
language for which is typically not the full specification language (e.g., it might
be limited to applicability conditions on the component’s externally invocable
routines).

A closed-system specification may be used to explore the implications and
ramifications of the system. Because the whole system is specified, it may serve
as a self-contained prototype suitable for immediate testing. Testing might take
the form of symbolic evaluation, simulation, property proving, or any combination
of these. Just as specification benefits from the ability to describe system-wide
behaviors, so these investigative methods are enhanced by the ability to use them
to explore system-wide behaviors.

2.1.2 Explicit Description of Decomposition. When a system is decomposed
into components, the components are usually restricted in the extent to which
they may interact with one another. The decomposition determines what
information “belongs to” a component and which activities are done by which
components. It also determines the restrictions on interactions among compo-
nents, that is, what information belonging to one component may be accessed or
affected by an activity of another component. For example, within the elevator
scenario, a passenger’s destination is information “belonging to” that passenger.
The controller is restricted from affecting that value or from accessing it.

The implementations of a system’s components, when combined, must achieve
the specified system behavior while complying with the restrictions on interac-
tions among components.

The specification of a system’s decomposition should be explicit and separate
from the specification of that system’s behavior. Each of these is a specification,
and hence may be expressed without regard to the restrictions implied by
the decomposition. For example, in specifying the behavior of elevators, part
of the specification may be that an elevator containing passengers must move
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Language Support for Composite Systems 201

in the direction of the destinations of those passengers-this system behavior is
expressed in terms of elevator locations and passenger locations and destinations,
without regard to the way the elevator component is restricted in its access to
knowledge of passengers and vice versa.

2.1.3 Component Behaviors Derived from System Behavior and Decomposi-
tion. An especially powerful consequence of the separate and explicit specifica-
tions of overall system behavior and system decomposition is that they serve as
the starting point from which to derive the behaviors required of the components.
Contrasting this with an open specification of a component, we see that the latter
must have decomposed the composite system behavior as a prerequisite to
expressing it.

By deriving component behavior from specifications of system behavior and
decomposition, the derivation process itself can be formally recorded and sup-
ported. Further, it retains maximum freedom of choice among alternative decom-
positions of system behavior into component behaviors. In contrast, starting the
development from an already decomposed system leaves a larger gap between
what is formally specified (individual component behaviors) and what is the
unformalized intent (system behavior). Also, in order to express the individual
component behaviors, one out of possibly many decompositions of the system
behavior must already have been selected, thus prematurely constraining the
options for implementing that component.

2.2 Development-Closed-System Specifications to Implementations
of Components

2.2.1 Development Process. The closed-system specification of a composite
system, together with a specification of its decomposition into components, serves
as the starting point for developing implementations of one or more of those
components. Since the closed-system style implicitly defines component behavior,
a major goal of such a development will be to derive an explicit definition from
this. In all but the most trivial of examples, this will not be accomplished in a
single step, but rather will involve the gradual decomposition of system-wide
behavior into individual behaviors allocated to the components. The result will
be an explicit specification of the behavior required of an individual component,
in the open style of specification. This paper focuses on language features that
facilitate expression of closed-system specifications and intermediate stages
toward open-style specifications of their components.

2.2.2 Intertwining of Specification and Implementation. Swartout and Balzer
[141 argue that specification and implementation are strongly intertwined. They
suggest that we should not expect to develop software by first constructing a
specification without any consideration of resource limitations, and thereafter
transforming that specification to introduce efficiency while completely preserv-
ing its functional behavior. Rather, the ideals of the specification will undergo
multiple modifications as implementation reveals necessary compromises. This
blurs the distinction between specification and implementation. We infer that,
to achieve our goal of offering automated support to software production and
maintenance, we must record and support this intertwining as part of the
development process.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

202 l Martin S. Feather

Developments from composite system specifications give rise to new forms of
intertwining. The ideals of a composite system specification are the behaviors
required of the overall system and the decorhposition of that system into com-
ponents. In realizing such a system as interacting components, it may be neces-
sary to modify these ideals as a result of interactions discovered during the
development process. For example, in order to coordinate activities in different,
components it may be necessary to extend the components’ interfaces (defined
in the decomposition) to allow more communication between them. Alternatively,
the interface might be left unchanged, and instead the overall system behavior
extended to include the behaviors that result from combining uncoordinated
components.

3. A LANGUAGE FOR CLOSED-SYSTEM SPECIFICATION

Our specification group at IS1 has developed a specification language, Gist. The
origin of this language is Balzer and Goldman’s study of the principles of good
software specification [2]. Three of their proposed principles are that

--the specification must encompass the system, of which software is a component;
--the specification must encompass the environment in which the system oper-

ates; and
--the specification must be operational.

These principles are clearly pertinent to the closed-system style of specifica-
tion; and hence in constructing Gist to satisfy these principles, we believe we
have emerged with a language supportive of such a style. Of course, Gist’s
language features that provide this support could probably be used with other
specification languages without too much difficulty.

A comprehensive description of Gist is beyond the scope of this paper; instead,
I will present only a summary of the language, and detail only those parts which
are of immediate relevance to closed-system specification. For a fuller description
of both the language and the motivations that shaped its design, see [3].

3.1 Denotation of a Gist Specification

The overall meaning of a Gist specification of some application is as follows:

The specification denotes the set, of acceptable histories that the application
may exhibit. Each history comprises an initial state and a sequence of
transitions. The transitions correspond to activity in the application domain;
applying a sequence of transitions to the initial state yields the state
corresponding to the application domain after those transitions have oc-
curred. States model the application domain at instants in time by means of
objects and associations among those objects; transitions modify the exist-
ence of objects and associations among them.

The transition structure of each “history” facilitates the expression of dynamic
activity taking place over time. This structure permits the direct modeling of
applications such as process control, communication systems, and operating
systems, where the system activity is not easily characterized as a function
mapping inputs to outputs, but is an ongoing series of interdependent interactions
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Language Support for Composite Systems 203

that affect the underlying domain. A specification denotes a set of such histories
to represent the possibly many alternative histories that the system may exhibit.
The “objects and associations among those objects” comprise Gist’s data-
modeling capability, which is essentially a typed entity-relationship model. This
model is appropriate for specification because of its neutrality toward any
particular representation that might be chosen for implementation.

This paper is not concerned with the details of Gist’s data model (namely,
what comprises states and what are legal transitions between states), so some
simplifying abstractions and assumptions are made. A transition is regarded as
simply a set? of primitive changes called deltas, where the only property of deltas
is that there is an equality relation between them. It is assumed that all histories
begin in the same initial staL3

The simplified denotation is thus

a Gist specification denotes a behavior, which is a set of histories;
a history is a sequence of transitions;
a transition is a set of deltas;
a delta is primitive; there is an equality relation over deltas.

3.2 Determining the Denotation-Generation and Pruning

A Gist specification comprises a generative component, which denotes a set of
candidate histories, and constraints, which denote predicates on histories. The
denotation of the specification is the set of all those candidate histories that
satisfy all the constraints.

In practice, this generate-and-prune paradigm is applied as follows: the gen-
erative portion straightforwardly defines a set of histories, encompassing all the
desired ones; the constraints separately specify characteristics and requirements
not necessarily ensured by the generative portion. The resulting denotation
consists of precisely those generated histories that satisfy all the constraints.
This style is not new to specification; Darlington, in his transformational deri-
vation of sorting algorithms [5], begins with a specification of .sorting that
generates all permutations of the input list, and thereafter filters to retain only
those permutations that are ordered. Where Gist makes a major divergence from
other specification languages is in incorporating this paradigm as fundamental
to determining denotation. Further, because Gist denotations are sets of histories,
constraints may refer to information spread through a history, making easy the
definition of constraints that refer to activities taking place over time (for
example, that the salary of an employee must be monotonic and increasing; that,
having touched a chesspiece, a player must thereafter move that piece; that
messages must be received in the order in which they were sent).

In a specification of the composite system behavior, both the generative portion
and the constraints may be defined in terms of information gathered from

‘Gist thus has merging semantics for parallelism, allowing a single transition to he composed of
several deltas. This permits the natural modeling of simultaneous activity, akin to “atomic transitions”
in databases.
s If necessary, introduce an initial empty state and appropriate transitions to lead to each of the
intended starting states.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

204 l Martin S. Feather

throughout the specified system. In other words, system decomposition in no
way limits expression of system behavior. As we shall see, in modeling the stages
that occur in developments from closed- to open-system specifications, it is
important to make generation and pruning sensitive to the decomposition.

3.2.1 Generation of Candidate Histories. The generative portion of a Gist
specification is built from primitive statements that cause state changes, com-
bined using conventional control constructs to provide the following:

sequentiality
conditionality

iteration

choice

parallelism

procedural abstraction

data-driven invocation
(demons)

stop the elevator; open the elevator doors;
if there is a passenger on board then . . .
for all floors at which there are waiting passengers
do . . .
choose open the elevator doors or move on to the next
floor
open the elevator doors and open the elevator shaft
doors
call SEND-ELEVATOR-TO-FLOOR[elevator2,
floor51 where SEND-ELEVATOR-TO-FLOOR[e of
type elevator, f of type floor] = . . .

whenever the elevator arrives at a floor do . . .

In defining a closed-system specification, the language of predicates and
expressions used by these control constructs has access to system-wide infor-
mation (e.g., the location of elevators, the status of their doors, or the destinations
of passengers). Also, the language has access to previous and future states within
the entire sequence of states that comprise a history (e.g., the last floor this
elevator stopped at, the next floor this elevator will stop at).

These liberal access abilities lend Gist considerable power of expression not
found in other specification languages.

3.2.2 Constraints and Pruning. For convenience, a constraint is, usually ex-
pressed as a predicate to be evaluated inside a state, in which case it will be true
of a history if and only if that predicate evaluates to true in every state in the
history. For example, the constraint that every passenger must have exactly one
destination floor will be true of a history if and only if in every state of that
history, every passenger in that state has exactly one destination floor. The
predicate defining the constraint may of course be expressed in terms of infor-
mation drawn from throughout the system, and may refer to previous and future
states of the history.

In what follows, it will not matter how a constraint is defined, only whether or
not a history satisfies a constraint. Hence a constraint will be represented as a
predicate on histories:

constraint: history + boolean

If c is a constraint and h is a history, write c(h) to denote the constraint applied
to the history, that is, c(h) will be true if the history satisfies the constraint,
false otherwise.
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Language Support for Composite Systems l 205

Pruning a behavior with a set of constraints retains those and only those
histories of the behavior that satisfy all the constraints. This is formalized in
function Prune, which, given a behavior b and a set of constraints SC, returns the
pruned behavior.

Definition. Prune

Prune: behavior X set of constraints + behavior

Prune(b, SC) = (h E b 1 (VC E SC 1 c(h))]

3.2.3 Some Properties of Pruning Constraints. The following properties follow
immediately from the definition of constraints and pruning; we shall see later
that, as we extend their definitions to take into account the decomposition into
components, not all of these properties are preserved.

Uniqueness. For any behavior b and set of constraints SC, Prune(b, SC) uniquely
defines a behavior.

Thus a specification denotes a uniquely defined behavior. Note that since a
behavior is a set of histories, nondeterminism is modeled as multiple histories
within that set. An implementation of a specification will be correct with respect
to behavior, provided the implementation’s behavior is a (nonempty) subset of
the specification’s behavior.

Monotonic. For any behavior b, set of constraints SC, and constraint c,

Prune(b, (c) U SC) G Prune(b, SC).

Thus the addition of a constraint may cause more histories to be pruned out, but
will never cause more histories to be retained.

Commutative. For any behavior b and sets of constraints scl and sc2,

Prune(Prune(b, xl), x2) = Prune(b, scl U ~2) = Prune(Prune(b, sc2), xl).

Thus a calculation of pruning may be done incrementally, and the order in which
the constraints are considered is irrelevant. In fact,

Prune(Prune(b, scl U ~2) = Prune(b, scl) fl Prune(b, ~2).

Thus pruning may be done independently for any factoring of the constraints
and the results combined to give the same net result.

Conjunctive. For any behavior b, constraints cl and ~2, and set of con-
straints SC,

Prune(b, (cl] U (~2) U SC) = Prune(b, {c3j U SC) where c3(h) = cl(h) A c2(h).

Thus constraints may be conjoined, or conjunctive constraints decomposed,
without changing the behavior.

3.3 Defining the Decomposition of a Closed-System Specification

3.3.1 Components and Agents. Composite systems are made up of components.
Each autonomous process in the domain being specified will typically be a
separate component (e.g., in a domain of elevators serving passengers in a

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

206 l Martin S. Feather

multistory building, each passenger, the elevator controller, and the elevator
mechanism itself might be components).

Gist has a construct called an agent, which is used to model components.
Agents partition the generative portion of a Gist specification. Thus every
primitive statement (one that contributes a delta or deltas to a transition) is
within the scope of some agent. When such a statement is executed, its containing
agent is said to have “done” the deltas contributed by that statement. For
example, if a statement within the passenger agent changes the passenger’s
location, that delta is said to have been done by that passenger agent. The
information of which agent has done a delta is recorded within the denotation
by labelling each delta with the agent that did it. To permit this record necessi-
tates extending the definition of the denotation slightly, modifying a transition
to be

A transition is a set of ordered pairs, each of which is an agent X delta.
An agent is primitive; there is an equality relation over agents.

The augmented denotation distinguishes between the same delta done by
different agents within a single transition (whereas the unaugmented denotation
would not). The language of predicates and expressions over histories (which is
used in defining both the generation of candidate histories and constraints to be
applied in pruning) may use this extra knowledge.

3.3.2 Agent Interfaces. I now propose an extension to Gist’s agents, to model
more of the aspects of components. The objective is to represent the restrictions
on interactions between components. To do this requires the notion of informa-
tion “belonging to” a component.

In addition to containing control statements, an agent may also contain
declarative statements of the data model’s objects and associations. Instances of
such objects and associations are then said to “belong to” that agent.

An agent’s implementation must comply with the restrictions on the informa-
tion it accesses and affects. The default restrictions are that an agent may access
and affect only the information that “belongs to” it. For example, if a passenger’s
destination is information belonging to the passenger agent, then the default
restriction is that only the passenger agent may access or affect that information.
These default restrictions may be overridden in agents’ interfaces. For example,
suppose an elevator’s location “belongs to” the elevator mechanism agent. To
model the fact that a passenger at a floor can see an open-doored elevator at that
floor (and hence knows its location), the interface of the elevator mechanism
grants the passenger agent the right to access that information under those
circumstances. The precise means of expressing interfaces is still in tentative
form; further experience is required to judge what will be the most generally
useful syntactic notations, defaults, and so on.

Compliance with a restriction on affecting information means that when a
delta that changes the information is done by an agent, that agent must be
allowed to affect that information. For example, if the elevator mechanism were
restricted from affecting a passenger’s destination, it would not be permitted to
change that value (otherwise it would be trivial to get a passenger to his/her
destination: simply change his/her destination to be his/her current location!).
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Language Support for Composite Systems l 207

Compliance with a restriction on accessing information is not usually deter-
minable until quite late in the development from specification to implementation.
Typically, Gist specifications define their generative portions and constraints in
terms of arbitrary access to information, without such access being recorded in
the denotation. For example, the specification of the constraint that limits the
movement of an elevator to the direction of its passengers’ destinations might be
expressed in terms of passengers’ presence inside elevators, and passengers’
destinations; but all that appears in the denotation is the movement of the
elevator, without any representation of access to information about passengers.
Ultimately, development will lead to an algorithm for controlling movement, at
which point that algorithm’s accesses can be made into explicit activities ap-
pearing in the denotation (e.g., sensing when buttons have been pushed-by
passengers requesting transportation to particular floors). Only then will it be
possible to check for compliance with access restrictions. Obviously, consideration
of these restrictions may have an early influence on the implementation process.

4. CHOICE AND RESPONSIBILITY

The previous section outlined those features of Gist that are supportive of the
closed-system style of specification. Now I show how Gist may be extended to
formalize the intuitive notions of “choice” and “responsibility,” notions which
are useful in both specification and development. I begin with the trivial but
illustrative example below.

4.1 Example Scenario-the Business Lunch

Consider a scenario of a business lunch with two participants, the host and the
visitor. They eat at a restaurant with a very limited menu, offering only two
choices: an expensive steak special, or a more moderate chef’s salad. The host’s
company has an austerity measure to discourage overly large expense claims, and
will only recompense the expense of a lunch if the total cost does not exceed
some preset limit (otherwise no compensation whatsoever is given). As it happens,
the cost of two steak specials exceeds this limit, whereas the cost of two chef’s
salads, or one chef’s salad and one steak special, falls below this limit. Hence the
two diners, if they wish to be compensated for their meal, must not both order
steak. Suppose that the host orders first. This scenario is expressed in terms of
behavior, histories, transitions, and so on, as follows.

The unpruned system behavior is the set of four histories, (hi, hz, h3, h4) where

hi = (H X salad); (V x salad]

hp = (H x salad); (V x steak)

h3 = (H x steak); (V x salad)
L = (H x steak); {V x steak}

The host orders salad,
then the visitor orders salad.

The host orders salad,
then the visitor orders steak,

and so on.

Notation. “H” (host) and “V” (visitor) are the agents in this system.
“H X salad” is the delta of ordering a salad, done by agent H

(the host).
“{H x salad)” is the transition consisting of a single delta.
“;” separates transitions in a history.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

208 l Martin S. Feather

The limit on their expenditure may be expressed as a constraint which holds
for histories in which they do not both order steak. Calling this constraint
“NotBothSteak”, we have

NotBothSteak(hi) = true for i = 1, 2, 3
= false for i = 4

Then

Prune((hl, hz, hS, b), (NotBothSteak]) = (hl, hz, h3).

Intuitively, this system’s behavior may be viewed as a sequence of choices,
H’s choice of lunch followed by V’s choice of lunch. This may be seen by drawing
the set of histories as a tree whose root is the common starting point of each
history, and whose branches are the transitions; see Figure 1. Each path through
the tree from root (the common starting point) to leaf (an end-point) is a history.
Histories with common initial sequences of transitions share the same sequence
of branches from the top of the tree, so that branch points within the tree occur
when and only when histories diverge.

Viewed in this manner, it is clear that pruning leaves H’s choice unrestricted,
but constrains V’s choice if H has chosen steak. Is this fair? To answer requires
a notion of responsibility. Intuitively, those and only those agents responsible for
a constraint should limit their choices to ensure satisfaction of that constraint.
Thus, if V is responsible for the NotBothSteak constraint, then this is fair,
because only V’s choices are constrained. Conversely, if H instead of V is
responsible, this is not fair. Instead, H’s choice should be constrained to salad,
leaving V’s choice unconstrained: see Figure 2.

4.2 Formalizing Choice and Responsibility

The original simple form of pruning simply discards those candidate histories
that fail any of the constraints, and so is neutral with respect to agents. This
neutrality is appropriate when specifying the ideal behavior of a composite
system. As such a system is decomposed into components, the necessity to
decompose ideal system behavior into a composition of individual component
behaviors introduces the need for discrimination among agents, and the notions
of choice and responsibility play an important role in these descriptions.

The simple business lunch example illustrates the overall approach to formal-
izing the notions of choice and responsibility. The behavior, a set of histories,
is viewed as a tree of histories, in which diverging branches in the tree corre-
spond to diverging histories. At a point in the tree where branches diverge, an
agent has the choice of the deltas it contributes to the transitions starting each
of those branches. Pruning discards histories in order to satisfy the constraints;
viewed on the tree, pruning lops off branches, and hence potentially limits
agents’ choices. Pruning must ensure that all the constraints are satisfied, and
must do so by constraining the choices of only those agents responsible for the
constraints.

4.2.1 Combining the Set of Histories into a Tree. A set of histories is combined
into a rooted, unordered tree by maximally sharing common initial sequences of
transitions. Thus each path through the tree from the root to a leaf corresponds
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Language Support for Composite Systems 209

unpruned pruned

“xm,:a Ttyieek

hc hz ha h h hz h, (hr)
NotEothSteak J 4 J x JJ J

Fig. 1. The diners’ behavior tree-unpruned and pruned.

h hz h3 hr h hz (ha) h3

NotRothStcak d J J x .I J

Fig. 2. The diners’ behavior tree-pruned when H is responsible.

to one of the histories in the original set. This tree representation is more
intuitive for understanding the notions of choice and responsibility.

The tree representation is interchangeable with the set representation, pro-
vided that no history in the behavior is an initial sequence of any other history.
This restricts the behaviors that can be represented. Fortunately, the restriction
is desirable, because if a behavior includes two histories, one of which is an initial
sequence of the other, and the system performs the sequence of transitions that
comprise the shorter history, then it would be impossible to tell whether the
system had actually completed the shorter history or was at any moment about
to continue with the longer one.

Our tree representation of behavior has much in common with Milner’s CCS
(Calculus of Communicating Systems) trees [8,13]. In CCS, a program’s behavior
is determined by how it communicates with an observer (its environment); rooted,
unordered trees with labeled arcs represent behaviors. CCS formalisms are suited
to representing and reasoning about behaviors of what I am calling components
and combinations of components.

4.2.2 Choice. An agent’s choices at a node in a behavior tree are the different
sets of deltas it contributes to the transitions emerging from that node. See, for
example, Figure 3, the diners’ pruned behavior tree.

Formally, define a function ChoicesAtNode which, given a node n in behavior
tree b and agent a, returns that agent’s choices (a set of sets of deltas) at that
node.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

210 l M&tin S. Feather

H’s choices here are {{salad}.{steak)}

;” V’s choices here are (0)

i

H’s choices here are (0)
V’s choices here are ((salad).{steak}}

hr hz

H’s choices here are {{}}

V’s choices here are {{salad}}

Fig. 3. Choices at nodes in the diners’ pruned behavior tree.

Definition. ChoicesAtNode

ChoicesAtNode: node x behavior x agent -+ set of sets of deltas

ChoicesAtNode(n, b, a) = ((6 1 (a x 6) E t) 1 t E TransitionsFromNode(n, b)]

TransitionsFromNode(n, b) = the set of transitions that emerge from node
n in behavior tree b (the empty set if n is not
a node of b)

Pruning discards histories from the set of candidate histories. Viewed on the
equivalent tree representation, pruning “lops off” branches of the tree. When a
branch is lopped off, the entire subtree it supported is discarded; see Figure 4.

Define function LoppedAtNode which, given node n in behavior tree b and
pruned behavior tree pb, returns the set of transitions beginning those branches
lopped from node n in that pruning.

Definition. LoppedAtNode

LoppedAtNode: node x behavior X behavior + set of transitions

LoppedAtNode(n, b, pb) =
TransitionsFromNode(n, b)
- TransitionsFromNode(n, pb)

At nodes from which branches have been lopped, agents may have fewer
choices in the pruned tree than they had in the unpruned tree (i.e., their choices
may be limited by the pruning; see Figure 5).

Formally, define LimitedByLopping to compute those agents whose choices
are limited in this manner when the branch beginning with transition t is lopped
off from node n as part of pruning to behavior tree pb (i.e., those agents whose
choice in the lopped transition is not among their choices remaining in the
pruned tree pb) .

Definition. LimitedESyLopping

LimitedESyLopping: transition X node X behavior + set of agents

LimitedByLopping(t, n, pb) = (a 1 (6 1 (a x 6) E t) B ChoicesAtNode(n, pb, a))

4.23 Responsibility. The agents responsible for a constraint limit their choices
so as to ensure the satisfaction of the constraint without making it necessary for
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Language Support for Composite Systems l 211

tP
,_.’ . . . ‘...

/q /A /#(X,)

‘.& .._....” . ..’

.:.
lopping off the branch beginning .:.

/
with transition t2 leads to the

N”‘.
. . . .

/

discarding of this entire subtree:

Fig. 4. Pruning lops off branches and their subtrees.

H’s remaining choices are {{salad}}

..:““‘v’s remaining choices are {a}

*

0.

H x salad
l .

l . . ~ ,..._..... “.’ In this lopped transition,

*. H’s choice was {steak},
0.

** Vs choice was 0
: *.

V x salad

x

V x steak : :..
: . .

: . .
. .

h h2 (h3 (h3

Since H’s choice in the lopped transition is not among H’schoices remaining

in the pruned tree, this lopping limits H.
Conversely, since V’s choice in the lopped transition is among V’s choices

remaining in the pruned tree, this lopping does not limit V.

Fig. 5. Limiting of agents’ choices owing to lopping of branches during pruning.

other, nonresponsible, agents to limit their choices. Thus, if pruning which lops
off a branch at a node has the effect of limiting the choices of some agents, those
agents must be responsible for lopping off that branch. The following definitions
determine which are the responsible agents.

Responsibility for a constraint is assigned to a set of agents. This is represented
by pairing the set of responsible agents with the constraint, to form an assigned
COTlStFUint:

assigned constraint = set of agents x constraint

When a history fails a constraint to which a set of agents is assigned, that set
of agents is responsible for pruning out the history. When a history fails several
such constraints, the set of responsible agents is the union of the sets of agents
responsible for each of the failed histories. This is expressed in function
ResponsibleForHistory which, given a history and a set of assigned constraints,
returns the agents responsible for pruning out that history.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

212 l Martin S. Feather

Definition. ResponsibleForHistory

ResponsibleForHistory: history x set of assigned constraints + set of agents

ResponsibleForHistoryy(h, sac) = U sa
(so~c)Esac 1 -c(h)

At a node where pruning lops off a branch, the set of agents responsible for
lopping that branch is the union of the agents responsible for the histories
comprising that lopped-off branch. If a branch in a tree is identified by the
transition beginning that branch, then the histories comprising that branch
are those and only those containing that transition. In the definition that
follows, “h contains t” means history h contains transition t. Formally, define
ResponsibleForLopping(t, b, sac) to return the set of agents responsible for
lopping off the branch beginning with transition t from behavior tree b when
pruning for set of assigned constraints sac thus:

Definition. ResponsibleForLopping

ResponsibleForLopping: transition x behavior
x set of assigned constraints + set of agents

ResponsibleForLopping(t, b, sac) = U ResponsibleForHistory(h, sac)
hEbJ hcontainst

These simple definitions result in a rather crude assignment of responsibility
when a history fails several constraints at once, or when several histories pruned
by the lopping of the same branch fail several constraints (in either case, the sets
of agents responsible for the failed constraints are simply unioned together to
determine the responsible agents for pruning). For example, as a consequence, it
is impossible to differentiate between two agents being separately responsible for
the same constraint and those two agents being jointly responsible for that
constraint. Whether a more sophisticated definition is required remains to be
seen. For the time being, the simple version set forth above will suffice.

4.2.4 Pruning for Assigned Constraints. Define predicate OKPruning(b, pb,
sac) to be true if, at every node retained in the pruned behavior tree pb obtained
by pruning b with set of assigned constraints sac, the agents whose choices are
limited by lopping a branch from that node are a subset of the agents responsible
for lopping that branch.

Definition. OKPruning

OKPruning: behavior x behavior X set of assigned constraints + boolean

OKPruning(b, pb, sac) = Vn E pb 1 Vt E LoppedAtNode(n, b, pb) 1
LimitedByLopping(t, n, pb) C ResponsibleForLopping(t, b, sac)

Implicit within this definition is the assumption that nodes not retained within
the pruned behavior tree need not be considered. Intuitively, if a choice point
(node) is never reached, it does not matter what choices used to be there (i.e.,
one way to avoid making nonresponsible agents limit their choices is to not let
them get to the state where they would choose).

Also implicit in this definition is the decision to consider the validity of lopping
at a node on a branch-by-branch basis. Alternative definitions, which determine
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Language Support for Composite Systems l 213

the validity of lopping at a node by simultaneously considering all the lopped-off
branches at once, have to be constructed with great care to retain the desirable
closure property (that the union of two prunings OK with respect to choice and
responsibility is also OK). Again, the simple definition set forth above is chosen
here.

Pruning is achieved by discarding histories from the set of candidate histories;
the predicate OKPruning defines when this is done in compliance with the
notions of “responsibility” and “limiting of choice.” There remains the original
purpose of pruning, namely the discarding of every history that fails any con-
straint. These conditions are embodied in function OKPrunings(b, sac), which
for behavior b and set of assigned constraints sac returns the set of all acceptably
pruned behaviors.

Definition. OKPrunings

OKPrunings: behavior x set of assigned constraints + set of behaviors

OKPrunings(b, sac) = (pb 1 pb G b A OKPruning(b, pb, sac)
A (Vh E pb, (sa x c) E sac 1 c(h)))

OKPrunings returns a set of behaviors, because for a given behavior and set of
assigned constraints there may be several prunings that satisfy the requirements.
The empty set of histories is always one of these behaviors. Also, OKPrunings is
closed under union,4 that is,

Vb, sac, pbl E OKPrunings(b, sac),
pb2 E OKPrunings(b, sac) 1 (pbl U pb2) E OKPrunings(b, sac)

This implies that a behavior never has two “incompatible” prunings, neither of
which can be extended to include the other. Also, for all finite sets of histories,
this guarantees that OKPrunings is uniquely defined (certain pathological infinite
sets of histories do not have a uniquely defined largest pruning).

These properties imply that, for a behavior that is a finite set of histories,
applying OKPrunings yields a lattice of behaviors, where the links of the lattice
correspond to subset. The (uniquely defined) largest behavior is the desired result
of pruning, since it discards as few of the candidate histories as necessary.
PruneA is defined to return this result, given behavior b and set of assigned
constraints sac.

Definition. PruneA

PruneA: behavior X set of assigned constraints + behavior

PruneA(b, sac) = Largest(OKPrunings(b, sac))
= U bs

bsEOKPrunings(b,sac)

4.3 Examples and Properties of Pruning Assigned Constraints

Pruning of unassigned constraints is simple in that the decision to retain or
discard a candidate history is not dependent upon the presence or absence of
other histories in the set of candidate histories. In constrast, pruning of assigned

’ See the appendix for a sketch of a proof of this.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

214 l Martin S. Feather

constraints is dependent upon the whole set of candidate histories, since it is
that set which defines agents’ choices. As a result, only some of the properties of
unassigned pruning mentioned in Section 3.2.3 remain properties of assigned
pruning, as is shown next.

Returning to the scenario of a business lunch.

The unpruned behavior is

(h,, hz, h8, b) where h1 = (H x salad]; (V x salad)
hp = {H x salad]; (V x steak]
h3 = {H x steak); {V x salad]
hb = (H x steak]; {V x steak)

NotBothSteak(hi) = true for i = 1, 2, 3
= false for i = 4

Pruning of assigned constraints gives

OKPrunings((hi, hz, ha, L), ((H, V) X NotBothSteak])
= i&l, hz, h31, h, h2L l II

(see Figure 6), hence

PruneA((hi, h2, hs, Ll, ((H, V) x NotBothSteak]) = {hi, hz, h3)

Extending the example, introduce the additional constraint that the visitor is a
vegetarian (call this constraint “VegetarianV”):

VegetarianV(hJ = true for i = 1, 3
= false for i = 2, 4

Then pruning of unassigned constraints gives

See Figure 7.

Prune((hi, hp, hB, h4), (NotBothSteak]) = (hi, h2, h3]
Prune((hi, ha, ha, h4), (VegetarianV)) = (hi, h3]
Prune((hi, ha, h3, h.,), (NotBothSteak, VegetarianV]) = (hi, h3)

4.3.1 Properties of Pruning Assigned Constraints. Uniqueness. Provided that
the unpruned behavior is a finite set of histories, pruning of assigned constraints
is guaranteed to uniquely define a behavior, that is, retains the important property
of uniqueness of the denotation of specification.

Relationship to unassigned pruning. Note that, in the above example, the result
of pruning with the NotBothSteak constraint assigned to all the agents in the
system is identical to the result of pruning when that constraint was unassigned.
This is true in general, that is, for any behavior b and set of constraints SC,

Prune&, SC) = PruneA(b, sac)
where sac = ((sa X c) 1 c E SC)

where sa = (a 1 36, t, h 1 (a X 6) E t A t E h A h E b)

In the above, sa is the set of all agents contributing deltas to the system,
that is, all those agents a such that, for some delta 6, the pair (a X 6) is in
a transition t contained in some history h of behavior b.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Language Support for Composite Systems 215

NotBothSteak JJ Jx

Lopping limits V’s choice; Lopping limits H’s choice; No histories remain, so no

{H,V} responsible { H,V} responsible choices to consider

Fig. 6. OKPrunings of the NotBothSteak constraint assigned to both diners.

x steak

NotBothSteak JJ Jx

VegetarianV J X J x

Fig. 7. The business lunch: unpruned behavior and constraints.

It follows immediately from the definition of PruneA (pruning of assigned
constraints) that pruning a behavior with a set of assigned constraints is always
a subset of pruning that behavior with those constraints unassigned. In other
words, for any behavior b and set of assigned constraints sac,

PruneA(b, sac) G Prune(b, SC) where SC = (c 1 (sa X c) E sac)

For example,

PruneA((hl, hZ, ha, L], ((HI x NotBothSteakJ) = (h,, h2), and
Prune({hl, hz, h3, L), {NotBothSteak)) = (hl, hz, h3)

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

216 l Martin S. Feather

At worst, the result of pruning may be the empty set of histories. For example,
H cannot alone take the responsibility for the VegetarianV constraint, since
either of H’s choices leaves V free to choose between steak and salad, hence;

PruneA((hi, hZ, hB, h4), ((Hj x VegetarianV)) = ()

Conjunctive. As in the unassigned case, constraints may be conjoined, or
conjunctive constraints decomposed, without changing the effects of pruning.
Thus, for any behavior b, set of agents au, constraints cl, c2, and set of assigned
constraints sac,

PruneA(b, (so X cl] U (sa X c2) U sac) = Prune@, (sa X ~3) U sac)
where(c1 A c2)(h) = cl(h) A c2(h)

For example,

PruneA((hl, hp, hs, b), ((V) x NotBothSteak, (V) X VegetarianV]) = (hi, hs]

and

PruneA((hi, hz, h8, Ll, ((VI x NotBothSteak&VegetarianV]) = (hi, h3)

where NotBothSteak&VegetarianV(h) = NotBothSteak(h) A VegetarianV(h)

In addition, pruning with the same constraint separately assigned to several sets
of agents is identical to pruning with that constraint assigned to the union of
those agent sets. Thus, for any behavior b, sets of agents, sal, su2, constraint c,
and set of assigned constraints sac:

PruneA(b, (sul X cl U (su2 X c) U sac) = PruneA(b, ((sul U su2) X cl U sac).

For example,

PruneA((hl, hz, h3, b), ((H} x NotBothSteak, (VI X NotBothSteakj)
= (hl, hz, Ll

PruneA((hl, b2, hS, b,), ((H, V] X NotBothSteak]) = (hl, h2, h3)

Not necessarily monotonic. The behavior that results from pruning with a set
of assigned constraints is not necessarily a subset of the behavior that results
from pruning with a superset of those assigned constraints, that is, addition of
another assigned constraint may cause some previously retained histories to be
pruned, and/or some previously pruned histories to be retained. For example,

PruneA((hi, hz, h3, h4], ((H) x NotBothSteak)) = (hi, h2)

Because H alone is responsible for pruning out h4, it is H’s choice that has to be
limited, thus necessitating pruning out h8 also.

PruneA((hi, ha, ha, h4), ((H) x NotBothSteak, (V) X VegetarianV)) = (hi, h3)

Adding the VegetarianV constraint assigned to V extends the set of agents
responsible for pruning h4 (which fails both constraints), hence V’s choice may
now be limited to effect pruning of L. This allows retention of hs (however, h2
is now pruned out because it fails the introduced constraint).
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Language Support for Composite Systems 217

This example shows that, when pruning simultaneously with several assigned
constraints, these constraints do interact with one another. The very simple
nature of pruning of unassigned constraints obscured any such interaction.

Not necessarily commutatiue. Multistage pruning of assigned constraints (in
which the pruned behavior of one stage of pruning is used as the unpruned
behavior for the next stage) is not necessarily equivalent to single-stage pruning,
and the order in which the pruning is done may make a difference. For example,

PruneA(b, ((V) X Vegetarianv]) = (h,)
where b = PruneA((hi, ha, h3, b], ((Hj X NotBothSteak))

Pruning first with ((HJ x NotBothSteakJ forces H’s choice to be limited to salad,
(hi, hzJ, whereupon pruning with ((VI X VegetarianV] removes ha.

PruneA(b, ({HI X NotBothSteak)) = (hi, h3)
where b = PruneA((hi, hz, h3, L), ((HI X VegetarianVJ)

Conversely, pruning first with ((V) X VegetarianV] forces V’s choice to be limited
to salad, (hi, hB 1, whereupon pruning with {(HI X NotBothSteak) need remove
nothing further; see Figure 8.

This phenomenon may be used to advantage, as is discussed in the following
section. Successive stages in multistage pruning are monotonic, since the output
of a stage of pruning is necessarily equal to or a subset of its input.

4.4 Reliance Among Constraints

A set of constraints may rely upon the effects of another set of constraints as
follows: if we begin with a behavior (Bl), prune first with a set (Sl) of constraints
to get another behavior (B2), and prune B2 with another set (S2) of constraints,
then S2 relies upon the effects of Sl’s pruning because it has to deal only with
the histories in B2, not with whatever additional histories were present in Bl
and removed by the first pruning.

This phenomenon can be demonstrated in the business lunch scenario; see
Figure 8.

Whenpruningwith (HJ X NotBothSteak followspruningwith (V) X VegetarianV,
H can rely upon V’s pruning to have removed the history in which V chose steak.
Hence H need prune no further, in particular, can retain choice of steak.
Conversely, if the prunings are done in the other order, H cannot rely upon V’s
pruning, and so must prune out choice of steak. In this case, although V can rely
upon H’s pruning, there is no advantage to be gained.

In practice, it is quite useful to simplify the expression of constraints. For
example, the specifier of an elevator controller may rely on passengers being
unable to enter an elevator whose doors remain closed (something that might
well be expressed by means of a constraint) in defining the constraint that
prohibits passengers from ever moving further from their destinations. The latter
may be expressed quite simply, without the need to be concerned with impossible
transportation histories in which passengers enter closed elevators.

Note that when dealing purely with unassigned constraints, this phenomenon
does not arise, because such constraints are not sensitive to choices.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

218 . Martin S. Feather

V x salad

/

Prune with

{H} x NotBothSteak

x

*. J
‘.

-.
*.

0.
‘. .
: ‘. : .

: . .

\

Prune with

{V} x VegetarianV

/)

-.

I

.

I Prune with Prune with

{V} x VegetarianV {H} x NotBothSteak
1

Fig. 8. Alternative multistage prunings in the business lunch scenario.

5. EXAMPLE-ELEVATOR SCENARIO

The scenario of controlling elevators in a multistory building is used to illustrate
composite system specification and development from closed to open style, which
is a necessary precursor to implementation.

5.1 Starting Point

The objective is to derive an open-system specification of the mechanism that
controls elevators and interacts with passengers to transport them to their
destination floors (henceforth this mechanism is referred to as the controller).
The starting point is a model of the composite system of which the controller is
a part; this takes the form of a closed-system specification. Since in principle the
system encompasses the physical universe, what is actually modeled is a man-
ageable abstraction that retains only relevant details.

5.1.1 System and Agents. The multistory building is modeled very simply as a
sequence of floors; elevators are modeled as objects with a location (a floor) and
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Language Support for Composite Systems 219

doors (either open or closed); passengers are modeled as objects with a destination
(a floor) and a location (a floor or elevator). Passengers are modeled only during
their interaction with the elevators, so the appearance of a passenger who wishes
to use the elevators to get from one floor to another is modeled by the creation
of a new passenger object with appropriate location and destination. This simple
model is divided into the following agents:

-Each passenger is a separate agent (in contrast to, say, using a single agent for
all passengers), so as to be able to consider what an individual passenger must
know and do.

-The controller is modeled as a single agent (which abstracts from details of
how an actual control mechanism interacts with elevator hardware-motors,
sensors, switches, etc.).

-The appearance of passengers is an agent that creates passengers (objects that
are also agents).

The somewhat counterintuitive introduction of an “appearance” agent derives
from the need to separate the activity of passengers who are interacting with the
elevators and the activity of passengers outside of such interaction (the latter
has been abstracted to bare essentials, i.e., that new passengers appear at floors
with other floors as their destinations).

5.1.2 System Decomposition. The decomposition of the elevator system into
agents determines the information belonging to each agent, the activities done
by each agent, and the restrictions on interactions among agents. For example,
a passenger’s location and destination are information belonging to that passen-
ger agent. When a passenger enters an elevator, that activity is done by that
passenger agent.

The extent to which passenger agents may interact with one another and with
the controller is determined by their interfaces. By default, no interaction is
allowed. Clearly this will not be acceptable. For the purposes of this presentation,
consideration of what are acceptable interfaces is delayed until after the assigned
constraints have been divided among the individual agents.

5.1.3 System Behavior. The desired system behavior is the rapid transporta-
tion of passengers to their destinations. This is specified by generating the set of
all possible transportation histories, and pruning to just those histories in which
passengers are transported rapidly to their destination floors.

Possible transportation histories are generated by combining the possible
activities of the various agents in the specification (the controller causing
elevators to move and open/close their doors, the appearance agent introducing
new passengers at floors with other floors as their destinations, and individual
passengers entering/exiting elevators). Constraints may be used in defining
possible transportation histories (e.g., to express that a passenger at a floor can
only enter an elevator whose doors are open at that floor).

Pruning to only rapid transportation histories is defined by constraints (e.g.,
to express that a passenger must never move further from his/her destination
floor). These constraints are assigned as the joint responsibility of the controller
and the passengers, but not of the appearance agent (for otherwise the behavior

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

220 l Martin S. Feather

could be trivially achieved by having passengers appear with their destinations
always equal to their locations). If there are properties of passenger appearance
that it would be advantageous to know (e.g., the majority of passenger travel is
to or from the ground floor), they would be expressed as constraints on the
appearance agent.

It considerably simplifies the definition of the constraints for rapid transpor-
tation if they have only to prune from the set of possible transportation histories.
That is, rapid transportation constraints rely upon the constraints defining
possible transportation histories to have already been applied. This is achieved
by pruning in two main stages, as shown in Figure 9. This is an example of the
use of multistage pruning referred to in Section 4.4.

5.2 Development to Divide Responsibility Among Individual Agents

The development goal is to decompose all constraints with responsibilities
spanning multiple agents into constraints with responsibilities separately as-
signed to the controller and individual passengers.

Decomposition of a constraint is achieved by choosing an implication of the
constraint to make into a separate, explicit constraint, and thereafter simplifying
the original constraint. Judicious choice of the implication will give a constraint
whose responsibility can be simplified to an individual agent. This process is
continued until all the constraints are assigned as the responsibility of individual
agents.

The development that follows has been done by hand only, that is, has not
been carried out in any formal system that guarantees the correctness of the
steps that are intended to preserve behavior. All the stages of the development
are expressible in the extended Gist that has been outlined. The stages are as
follows:

(1) The initial constraints defining suitably rapid transportation are as follows:

(a) NO FURTHER FROM DESTINATION. A passenger must never move fur-
ther from his/her destination floor.

(b) NO DELAY TO RIDERS. Passengers riding inside elevators must not be
unnecessarily delayed. “Unnecessary delay” can be defined on a history
as a contiguous sequence of states during which a passenger was inside
the elevator while the elevator remained inactive (did not move, open
or close its doors, or take on or let off passengers).

These constraints are initially assigned as the joint responsibility of the
controller and all passengers.

(2) Decompose NO FURTHER FROM DESTINATION by:

(a) Defining the (single-valued) Passenger Direction (P-D) of a passenger
to be the direction (up or down) in which that passenger must go to
reach his/her destination floor. (More precisely, the P-D of a passenger
will have no value when the passenger is at his/her destination floor,
so it is either single-valued or has no value.) This definitional step names
a piece of information in preparation for future steps.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Language Support for Composite Systems 221

Generative portion of
specification 1st stage of pruning

I set of all possible
transportation histories

I I
2nd stage of pruning

Fig. 9. Main stages of pruning in the initial elevator specification.

(b) Choosing the implication of NO FURTHER FROM DESTINATION, that all
riders in a moving elevator have the same P-D (or none at all), to
become the explicit constraint RIDERS IN MOVING ELEVATOR COMPAT-
IBLE. This is assigned as the responsibility of the controller and all
passengers.

(c) Taking advantage of the introduced constraint to simplify NO FURTHER
FROM DESTINATION; its simplified form is that a moving elevator with
a rider must be moving in that rider’s P-D direction, and is the
responsibility of only the controller.’ The constraint is renamed accord-
ingly to MOVE IN RIDER'S P-D. Thus the introduced constraint allowed
NO FURTHER FROM DESTINATION to be simplified to a responsibility of
the controller alone.

Figure 10 illustrates the development up to and including step (2~). The double-
bordered boxes show the constraints and their associated sets of responsible
agents that are in effect following this stage of development, while the single-
bordered boxes show the constraints that have been decomposed (at this stage

‘This simplification is intended to leave unchanged the behavior denoted by the specification. NO
FURTHER FROM DESTINATION is equivalent to the conjunction of RIDERS IN MOVING ELEVATOR
COMPATIBLE and MOVE IN RIDER'S P-D; the questionable step is the assignment of the singleton set
of only the controller as the set of agents responsible for this latter constraint. The danger in this is
that lopping a transition in which an elevator with a rider moves the wrong way limits choices of not
only the controller, but also of some passenger(s), and whereas previously the passengers shared
responsibility, now it rests on the controller alone, thus not admitting the same pruning. To see that
this does not arise, compare any transition in which the elevator moves the wrong way with the
similar transition comprising all the same changes but for the elevator moving the right way. If
moving the right way succeeds, then lopping the transition of moving the wrong way limits only the
controller’s choice of which way to move the elevator (since the same choices of all the other agents
are present in the retained transition). Conversely, if moving the right way fails, then it is intuitively
clear that whatever constraints caused its failure must also apply when moving the wrong way, and
hence if pruning of the right way transition is valid, then pruning of the wrong way transition must
also be valid.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Martin S. Feather

, _
:

P-D) ’ 2b imply
: ‘\
:

2c simpli*

;

------I ------I
,. C&PS :I
lL_~~~~~~~i:

Fig. 10. Development up to and including step (24.

there is only one such constraint). Stages of decomposition (steps (2b) and (2~))
are indicated as labelled arrows; the label “imply” on (2b) signifies that the
constraint at the source of the arrow (NO FURTHER FROM DESTINATION) implies
the constraint at the target, while the label “simplify” on (2~) indicates that the
constraint at the source of its arrow is simplified into the constraint at its end
by taking advantage of the other constraint pointed to by the lightly dotted line
(RIDERS IN MOVING ELEVATOR COMPATIBLE). Using these same notationalcon-
ventions, the entire development is shown later in Figure 11.

(3) Decompose NO DELAYTO RIDERS by:

(a) Choosing the implication that all riders in a moving elevator have the
same P-D to become the explicit constraint RIDERS IN ELEVATOR
COMPATIBLE. This is assigned as the responsibility of the controller and
all passengers.

(b) Introducing constraint EXIT WHEN AT DESTINATION, that a passenger
in an elevator exits that elevator when and only when it is at his/her
destination floor. This is assigned as the responsibility of the controller6
and all passengers. This is not implied by the existing constraints, since
it eliminates otherwise acceptable histories in which a passenger exits
prior to reaching his/her destination.’ Hence this step modifies the
specification, rather than simply transforming its form while leaving the
denoted behavior unchanged. The motivation for this modification is to
simplify the behavior of passengers riding elevators. This will make it

’ The controller’s inclusion is necessary to have the controller open elevator doors.
7 Under certain circumstances the eliminated transportation history may even have been preferred
from a global viewpoint. For example, suppose the last remaining passenger inside an elevator exits
prior to reaching his/her destination, thus freeing that elevator to reverse direction and to pick up a
multitude of passengers wishing to go the opposite way (i.e., delaying the one passenger in order to
better serve the many). Irrespective of the desirability or otherwise of such a history, it is clear that
to coordinate the passengers and controller to achieve this would require more interagent communi-
cation than is commonly found in real-world elevator systems.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Language Support for Composite Systems l 223

easier t0 iSO.&? What FeSpOmibi& the COntFOlkF has fOF the NO DELAY
TO RIDERS constraint. The preceding step (3a) made explicit the consist-
ency condition on passengers within the same elevator; this modification
makes explicit (and simplifies) the condition on passenger exit from
elevators.

(c) Simplifying NO DELAY TO RIDERS. To do this successfully requires the
use of information and constraints that will be defined during de-
composition of other constraints. This simplification step is delayed
accordingly.

(4) Decompose EXIT WHEN ATDESTINATION by:

(a) Choosing the implication that an elevator at the destination floor of
some rider in that elevator must open its doors to become the explicit
constraint OPEN DOORS FOR EXITOR. This is initially assigned as the
reponsibility of the controller alone.

(b) Taking advantage of the introduced constraint to simplify the assign-
ment of responsibility for EXIT WHEN AT DESTINATION from the con-
troller and all passengers to only the passenger who is the exiting rider.

(5) SiIUX RIDERS IN ELEVATOR COMPATIBLE iIIIpk3 RIDERS IN MOVING ELE-
VATOR COMPATIBLE, the latter has been subsumed and so is discarded.

(6) Associate with each elevator an Elevator Direction (E-D), which is non-
deterministically varying, subject to the following constraints:

-E-D is a direction (responsibility assigned to the controller);
-E-D is single-valued (responsibility assigned to the controller);
-MOVE IN E-D, the constraint that when an elevator moves, its E-D =

the direction of movement (responsibility assigned to the controller);
and

-E-D = RIDER'S P-D, the constraint that when an elevator has a passenger
inside, its E-D = that passenger’s P-D (responsibility assigned to the
controller and all passengers).

For every elevator, there is always some E-D value satisfying the above
constraints,8 hence this definitional step makes no change to the behavior,
other than adding some nondeterminism of varying E-D values when they
are not uniquely determined. E-D will be useful in reexpressing some of the
existing constraints and for communicating between the controller and the
passengers.

(‘7) Since both E-D = RIDER'S P-D and MOVE IN E-D imply MOVE IN RIDER'S
P-D, the latter has been subsumed and so is discarded.

(8) Since both E-D = RIDER'S P-D and the single-valuedness of E-D imply
RIDERS IN ELEVATOR COMPATIBLE, the latter has been subsumed, and so is
discarded.

sOccupied elevators take as E-D value the P-D of their rider(s), which is unique because of RIDERS
IN ELEVATOR COMPATIBLE; moving elevators take as E-D value their direction of movement; MOVE
IN RIDER'S P-D ensures consistency for elevators that are simultaneously moving and occupied.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

224 l Martin S. Feather

(9) Decompose E-D = RIDER'S P-D by the following:

(a) Choosing the implication that an elevator’s E-D must remain constant
while there is a passenger inside to become the explicit constraint E-D
CONSTANT WHILE RIDDEN. This is assigned as the responsibility of the
controller.

(b) Introducingtheconstraint NO SIMULTANEOUSENTRYANDE-DCHANGE,
that a passenger may not enter an elevator simultaneous with that
elevator’s E-D value changing. This is assigned as the responsibility of
the controller and all passengers. This eliminates some changing of E-D
values, but leaves all other choices (of passenger entry, etc.) unaffected,
hence makes no change to the behavior other than limiting some of the
nondeterminism introduced in step (6). The motivation for this modifi-
cation is to simplify the correlation between E-D and riding passenger’s
P-Ds. The preceding step (9-a) made explicit the need to keep the E-D
constant while an elevator is being ridden; this modification simplifies
the situation in which a passenger boards an elevator, by removing the
tricky case of the E-D changing in parallel with the passenger boarding.

(c) Introducing the constraint DOORS CLOSED WHILE E-D CHANGES, that
an elevator’s doors must be closed while its E-D value changes. This is
assigned as the responsibility of the controller alone. This reduces some
last minute changing of E-D values, but leaves all other choices (of door
closing, etc) unaffected, hence makes no change to the behavior other
than further limiting some of the nondeterminism introduced in step (6).
The motivation is to simplify the conditions under which the controlZer
may change E-D values so as to be able to isolate what responsibility a
passenger boarding an elevator has for the NO SIMULTANEOUS ENTRY
AND E-D CHANGE constraint.

(d) Since DOORS CLOSED WHILE E-D CHANGES implies NO SIMULTANEOUS
ENTRY & E-D CHANGE, the latter has been subsumed and so is discarded.

(e) Taking advantage of the constraints introduced in the preceding steps
to simplify E-D = RIDER'S P-D; its simplified form is that a passenger
entering an elevator must have a P-D value equal to the elevator’s
E-D value, and is the responsibility of the entering passenger only.
The simplified constraint is renamed accordingly to ENTER ONLY IF
E-D = P-D.

(10) Last, return to the decomposition of NO DELAY TO RIDERS begun in step
(3). So far, the introduced constraints isolated when a passenger may not
enter an elevator; now a constraint is introduced to determine when a
passenger must enter. Having done this, it will be possible to assign the
remainder of the responsibility for the original constraint to the controller.
This is done by the following:

(a) Introducing a constraint IMMEDIATE ENTRY, that a waiting passenger
does not pass up the opportunity to enter an appropriate elevator (i.e.,
an open-doored elevator at that passenger’s floor with E-D = the
passenger’s P-D; if there are several such elevators, then any one of

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Language Support for Composite Systems 225

them). This is assigned as the responsibility of the entering passenger
only. This constraint is not redundant, because it eliminates otherwise
acceptable passenger actions. Hence this step, l&e the introduction of
EXIT WHEN AT DESTINATION (step (3-b)), is a modification to the denoted
behavior, in this case one that simplifies passenger entry into elevators.

(b) Taking advantage of the constraints introduced in step (3) and in the
previous step to simplify NO DELAY TO RIDERS; its simplified form is
that an occupied elevator must not stop at a floor unless it is the
destination of one of the riders, or the location of a waiting passenger
who will board (i.e., who has a P-D equal to the elevator’s E-D), and is
the responsibility of the controller only. The simplified constraint is
renamedaccordinglyto STOP ONLYTO ALLOW ENTRY/EXIT.

5.3 End Point

The entire development is sketched in Figure 11.
Each of the remaining constraints is now the responsibility of a single com-

ponent (controller or passenger). Some intertwining between specification and
implementation occurred, as evidenced by the steps (3-b) and (10-a) where
constraints were introduced that modified the denotation. The definition of the
latter modification (introduction of the IMMEDIATE ENTRY constraint) relied
upon concepts introduced in the course of the development (E-D and P-D), and
hence would have been particularly hard to formulate as part of the initial
specification.

5.3.1 Agent Interfaces. Until now, no consideration has been given to what
each agent’s interface should be, that is, what access an agent has to information
belonging to other agents. In truth, these considerations have already influenced
the development, for example, part of the motivation for introducing the E-D
value for elevators was to serve as a communication between the controller and
individual passengers. t

Information belonging to the controller is the locations of elevators, their E-D
values, and the status of their doors.

Information belonging to an individual passenger is that passenger’s destina-
tion and location (if inside an elevator, then that elevator; if outside, then the
floor).

The following interfaces provide access to sufficient information to permit
implementation.

-Allow the appearance agent to create new passengers and initialize their
locations and destinations.

-Allow the controller to observe the following: the presence of and destination
floors of passengers inside elevators, and the presence of and direction towards
destinations of passengers waiting for elevators.

-Allow a passenger to observe the following: when waiting at a floor, the presence
of and E-D values of open-doored elevators at that floor, and when riding
inside an elevator, the location (floor) of that elevator.

The passenger interface implies some extra activity of the controller to dis-
play E-D values and elevator locations to passengers; this corresponds to actual

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

226 l Martin S. Feather

2c simp,ify RIDERS IN
I MOVING
:

r-l

MOVE IN L 1 ELEVATOR
COMPATIBLE

r----- -7

RIDER’S P-D .- .

\, C&PS :
,L ------- J
3

I

:
iCi

m-1
:

6 introduce

,‘I \
7 subsume ,’ : ‘.

9a imply i

5 subsume

lb m$+
: t

3a imply
,
1 I

1’
, ,

I
\ I

I’ 3b introduce :

I *; : 10a *
/ 1.

I , introduce

i i-------i
8

---. 8 subsume \
‘\

‘%
I

simplify..
I
8
t

ENTER ONLY IF

i

*. -, :

:) :

. . \ :

-.* (:

. :

1 Ob simplify

i
,
\
\
I

NO SIMULTANEOUS

W subsume ‘1

-------A

.p2q~~gbi-i

’ $--;,:I
I

1 9b introduce

I

9c introduce

Key:
cl

r--1
= constraint : I = set of mponsible agents. where C = controller,

,--a P = passenger, PS = allpassengen

q / ‘iso ‘I II !bL$!
= constraint I set of responsible agents remaining at end of development

------* = development step; * indicates a modification

. = used in a simplification

Fig. 11. Elevator scenario development.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Language Support for Composite Systems l 227

real-world elevator systems. Similarly, the controller interface implies some extra
activity of passengers to display their directions when waiting for elevators, and
to display their destinations when inside elevators; unfortunately, this is not
realistic. Rather, passenger behavior is extended to provide information from
which the above may be deduced. In practice, passengers send signals to the
controller (by pressing buttons at floors or inside elevators), and controller
behavior is extended to confirm receipt of such information (by lighting pressed
buttons, etc.).

When appearing at a floor, a passenger presses a button corresponding to his/
her desired direction (unless that button is lit to show it has already been
pressed). Similarly, when entering an elevator, a passenger presses a button
corresponding to his/her destination (again, unless that button is already lit).
The controller lights those buttons in response to their having been pressed, and
unlights them when the condition no longer holds (e.g., when an “up” elevator
has stopped and opened its doors at a floor, all the passengers waiting to go up
will board, so the controller unlights the “up” button). From these signals, and
knowledge of passenger behavior: the controller is able to deduce sufficient
information for its correct implementation.

A rather different interface that allowed more access to information between
controller and passengers might offer radically different possibilities for the
development. For example, suppose all passengers in the building were given
communication devices that they used to inform the controller of their presence
and desired destinations, and that the controller, through these devices, in-
structed passengers when and which elevators to enter/exit. Under these circum-
stances the controller could do more to optimize the global system performance
by occasionally delaying a few passengers, as discussed in the footnote to
development step (3-b).

Clearly, there is significant intertwining between the interface and behavioral
aspects of this specification, which has only been hinted at in this presentation.

5.3.2 Insights into the Development. The ordering of the presented develop-
ment’s steps does not necessarily reflect the chronological trace of its construc-
tion. Also, blind alleys in the original construction process have been omitted.
I will not attempt to relate the entire history, but will simply identify some of
the insights that guided construction. Their influence can be discerned on the
pedagogical development that has been presented.

One key insight is that transitions inducing interaction among agents are focal
points in the development. In our elevator scenario, these transitions are entry
and exit of passengers, and elevator movement and door activity. Decomposition
of constraints that span multiple transitions and agents is usually aimed at
formulating smaller constraints on these focal point transitions. For example,
EXIT WHEN AT DESTINATION and IMMEDIATE ENTRY constrain the focaltransi-
tions of passenger entry; their presence allows decomposition of NO DELAY TO
RIDERS into STOP ONLY TO ALLOW ENTRY/EXIT and RIDERS IN ELEVATOR

‘For example, knowing that a passenger will exit an open-doored elevator when and only when its
doors are open at that passenger’s destination floor allows the controller to deduce when passengers
exit without requiring passengers to signal their exit in any manner.

ACM Transactions on Programming Languages end Systems, Vol. 9, No. 2, April 1987.

228 l Martin S. Feather

COMPATIBLE, the former is a constraint on a focal point of elevator activity, and
the latter is further decomposed.

Introducing E-D (Elevator Direction) values as an explicit form of communi-
cation between controller and passengers is crucial to coordinating these multiple
agents. Clearly, the knowledge that this is a solution applied in real elevator
systems must have influenced my construction of the development. However, it
is interesting to speculate that I might have been able to invent this by considering
the information implicitly shared by the MOVE IN RIDER'S P-D and RIDERS IN
ELEVATOR COMPATIBLE constraints.

Recognizing the opportunity to share the RIDERS IN ELEVATOR COMPATIBLE
constraint between decomposition of NO FURTHER FROM DESTINATION and NO
DELAY TO RIDERS is crucial in eliminating redundancy in the development. Such
opportunistic effects are likely to arise in many developments, and since they are
difficult to predict in advance, we must expect to have to look over a growing
development in order to identify them, and be prepared to reorganize to take
advantage of them.

5.3.3 Completing the Implementation of the Controller. Having isolated the
responsibility for each constraint to individual agents and having introduced all
the necessary explicit signalling that each agent must make to other agents, the
specification of the controller is now in open form; that is, it makes no use of
closed-system concepts, although it may continue to make liberal use of other
Gist specification constructs, including constraints. The constraints on the
passengers and passenger appearance agent, together with the generative descrip-
tion of how those agents behave, define the complete range of inputs to which
the controller must respond. The constraints on the controller, together with its
generative description, define the behavior of the controller in response to its
inputs.

The derivation of an implementation of the controller, from this open-system
specification into a program expressed in some target programming language,
falls into the category of conventional program transformation. For example,
removing the use of a constraint on the controller is equivalent to implementing
nondeterminism and backtracking, or, under favorable circumstances, finding a
deterministic algorithm that will pick correct choices the first time. The general
problem of transforming open-system specifications (which may still be far
removed from efficient implementations) is quite hard, but falls outside the scope
of this paper. The reader interested in how we approach the transformation of
Gist specifications into implementations is referred to [l] and [111 for discussions
and illustrations of our techniques.

5.3.4 Development Structure. This example also illustrates the rich structure
of the development from specification to implementation. In the domain of
development done by program transformation, there is a clear trend toward richer
languages for recording developments and more sophisticated mechanisms for
applying them. See [15] for a survey of earlier research in this direction and for
a description of Wile’s POPART system, a mechanism for (among other things)
applying developments expressed in his development language PADDLE. We
have applied POPART to the development of some Gist specifications, although
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Language Support for Composite Systems l 229

not on the scale of this elevator scenario. Fickas has gone so far as to view both
development and specification in the framework of a more general problem-
solving process [6]. Presumably we should also record and support the develop-
ment from closed-system to open-system specifications in a more formal manner
than simply the hand-sketched presentation in this paper.

6. CONCLUSIONS

6.1 Related Work

Other researchers have recognized the above motivations and have recommended
their equivalent of what I call the closed-system style of specification. The
surveys below provide many pointers to related research.

6.1.1 Surveys of Related Work. The Executable Metric Models Applications
(EMMA) project, at Imperial College of Science and Technology, London, was
initiated as the first step toward developing methods, techniques, and tools to
support the entire software development process, including system evolution.
Their final report [4] presents their objectives and findings, including a summary
of existing and envisaged tools, techniques, and languages for modeling systems
prior to implementation. They argue for “a requirement representation which
specifies the system and its environment as a closed world. This ‘embedded’ style
of requirement is contrasted with a ‘black box’ style, in which the system
boundary is explicit, and the environment is modeled only as a source of inputs
and sink for outputs.” They observe that approaches based on the rigorous
application of correctness-preserving transformations (of which ours is an in-
stance) are “techniques which have yet to be tested for significant applications.”
Of the development methods in common use, the only one they find to match
their desired software development process is the Jackson System Development
Method, JSD [lo]. JSD is based on informal specifications, and thus does not
have automated support for development. To its credit, however, it is in real-
world use.

Another survey is Zave’s description of the “operational” approach to software
development [171. Zave characterizes such an approach as one that uses an
executable model of the proposed system interacting with its environment as the
starting point from which to derive the implementation. Cited by Zave as
instances of the operational approach are JSD (as in the EMMA report),
Applicative Programming, our own project, and Zave’s PAISLey project. Zave
reminds us that many of the ideas of this approach are relatively new and
untested, and warns that they may not deliver in practice what they deliver in
theory; on an optimistic note, she says of these ideas: “They are interesting in
their own right for the new perspective they provide, and if successful will yield
substantial gains in software productivity.”

6.1.2 Specific Related Research. Another ongoing research effort based upon
formal specification is Zave’s own PAISLey project, described in detail in [16].
Zave separately specifies system behavior and system decomposition. PAISLey
is Zave’s language for specifying system behavior. PAISLey specifications take
the form of a collection of processes, each of which represents one of the

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

230 l Martin S. Feather

autonomous entities in the domain being specified. The behavior of a process is
a sequence of states, described by an applicative language definition of a successor
function. Interactions between processes take place via “exchange functions,”
which carry out the side effect of asynchronous interaction, but which, within a
process itself, appear as normal functions. This is very different from Gist, which
takes a much more global view of the whole system in its approach to specifying
behaviors. Gist’s ability to use information drawn from the whole system in
descriptions of both behavior and decomposition appears to have no direct
analogue within PAISLey.

Our research ambitiously aims to assist a wide range of software development.
Narrowing one’s goals somewhat may permit a more immediate realization of
techniques for some specific problem domains. For example, Merlin and Boch-
mann [12] study a method to elaborate the specification of the “submodules”
(components) of a system; if the system consists of a collection of submodules,
and the system and all but one of its submodules are specified, then their method
elaborates the specification of that remaining module. By restricting their atten-
tion to specifications given in terms of sets of possible execution sequences, they
emerge with a formula for the remaining module’s specification. In the further
restricted context of finite state machines, they have a constructive algorithm
evaluation of the formula. They see this approach as being useful in the design
of distributed systems in general, and find a particular application in the design
of communication protocols.

Milner’s CCS (Calculus of Communicating Systems) [13] and Hoare’s CSP
(Communicating Sequential Processes) [9] are well-known approaches to study-
ing and specifying the behavior of ongoing processes. The similarity of our tree
representations of behavior to Milner’s CCS trees has already been identified
(Section 4.2.1). However, in marked contrast to our proposed approach, both
CCS and CSP favor the construction of systems by the combination of subsystems
whose only communication with one another is through explicit ports. The
behavior of such a system is derived from the combination of the behaviors of its
subsystems. Their disciplined construction techniques permit the well-structured
expression of composite systems. We have chosen instead to specify the behavior
of a composite system directly, making liberal use of constructs that draw
information from across the entire system without regard to component bound-
aries. Our preference is to derive the behaviors of the individual components
from such a specification, and our emphasis is to seek structure primarily in the
development process itself rather than in the programs that emerge from that
process.

6.2 Summary

The premise of this paper has been that a composite system’s components
should be implemented by developing them from a specification of the behavior
required of that system and a specification of how that system is divided into
components. This implies the need for a specification language to express the
various stages in developments from composite systems to implementations
of their components.
ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Language Support for Composite Systems 231

Our group’s specification language, Gist, appears suited to this purpose. Of
Gist’s existing features, the following combine to be of particular utility.

-Gist is an operational specification language. The denotation of a Gist speci-
fication of a system is the set of acceptable histories that that system may
exhibit. This is propitious for the specification of system behaviors that are
ongoing and/or nondeterministic.

-A “generate and prune” paradigm is used to determine denotation, encouraging
a simple specification style in which a broad set of candidate histories is
generated, clearly encompassing all the desired histories, after which pruning
removes those histories not meeting the easily stated requirements.

-Language constructs used in defining both the generation and pruning of the
set of candidate histories have liberal access to information within those
histories. It is important to stress that the specification of a composite system’s
behavior and its decomposition into components can each be expressed in
terms of information from throughout that system. Only the components’
implementations must abide by the restrictions of the decomposition.

The following enhancements of Gist have been proposed for further supporting
composite-system specification and development.

-Gist’s agents model the components of a system. Agents partition the genera-
tive portion of a specification so that each activity can be associated with the
agent that performed it. Additionally, information may belong to agents. This
permits modeling restrictions on the extent to which one component may
access or affect information belonging to another component.

-Formal meaning is given to the notions of “choice” and “responsibility” in
terms of Gist denotations. These notions appear to play a major role in
describing the stages of decomposition of system behavior into individual
component behaviors.

Further work is required to consolidate some of these specification ideas. For
example, accommodating the notion of changing the set of agents responsible for
a constraint during the course of a history appears possible. Extensive work
remains to be done to provide mechanized support for the development of
implementations from closed-system specifications.

APPENDIX. Outline of Proof that OKPrunings is Closed under Union

THEOREM. (From Section 4.2.4.) The set of behaviors returned by OKPrunings
is closed under union, that is,

Vb, SC-X, rl E OKPrunings(b, sac),
r2 E OKPrunings(b, sac) 1 (rl U r2) E OKPrunings(b, sac).

Its proof is provided as an illustration of the formal manipulations that are
necessary to reason about behaviors and their pruning.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

232 l Martin S. Feather

PROOF. Unfolding the definition of OKPrunings and labeling the conjuncts,
the objective is to show that

[l] rl !Z b A [4] r2 C b A
[2] OKPruning(b, rl, sac) A [5] OKPruning(b, r2, sac) A
[3] (Vh E rl, (sa x c) E sac 1 c(h)) [6] (Vh E r2, (sa x c) E sac 1 c(h))

implies

[7] (rl U r2) G b A
[8] OKPruning(b, (rl U r2), sac) A
[9] (Vh E (r-1 U r2), (su X c) E sac 1 c(h))

[I] and [4] imply [7] (trivially), and [3] and [6] imply [9] (also trivially).

Unfolding OKPruning in [2], [5], and [8], it remains to show that

[lo] Vn E rl] Vt E LAN(n, b, rl)] LBL(t, n, rl) C RFL(t, b, sac) A
[ll] Vn E r2] Vt E LAN(n, b, r2)] LBL(t, n, r2) G RFL(t, b, sac)

imply

[12] Vn E (rl U r2)] Vt E LAN(n, b, (rl U r2))] LBL(t, n, (rl U r2)) C
RFL(t, b, sac)

abbreviating LoppedAtNode as LAN, LimitedByLopping as LBL, and
ResponsibleForLopping as RFL.

For any n E (rl U r2), we may assume without loss of generality that n E rl,
hence from [lo],

Vt E LAN(n, b, rl)] LBL(t, n, rl) G RFL(t, b, sac)

rl C (rl U r2), so by Lemma 1,

LAN(n, b, rl U r2) C LAN(n, b, rl),

hence

Vt E LAN(n, b, rl U r2)] LBL(t, n, rl) G RFL(t, b, sac)

rl G (rl U r2), so by Lemma 2,

LBL(t, n, rl U r2) C LBL(t, n, rl)

hence by transitivity of G,

Vt E LAN(n, b, rl U r2)] LBL(t, n, rl U r2) G RFL(t, b, sac).

Since this holds for any n E (r-1 U r2), this proves [12] Cl

LEMMA 1. r G rr implies LAN(n, b, rr) C LAN(n, b, r). Intuitively, retaining
more histories reduces lopping at nodes.

PROOF.

LAN(n, b, rr) = TFN(n, b) - TFN(n, rr),
abbreviating TransitionsFromNode as TFN

r G rr, so TFN(n, r) C TFN(n, rr) (trivial), hence
LAN(n, b, rr) G TFN(n, b) - TFN(n, r) = LAN(n, b, r) Cl

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

Language Support for Composite Systems 233

LEMMA 2. r C rr implies LBL(t, n, rr) s LBL(t, n, r). Intuitiuely, retaining
more histories decreases the set of agents whose choices are limited.

PROOF.

LBL(t, n, rr) = (a 1 (d 1 (a x 6) E t) 4 CAN(n, rr, b)],
abbreviating ChoicesAtNode as CAN

r c rr, so by Lemma 3,

hence

CAN(n, rr, b) 2 CAN(n, r, b),

LBL(t, n, rr) C (a 1 {d 1 (a X 6) E t) 4 CAN(n, r, b)) = LBL(t, n, r) Cl

LEMMA 3. r G rr implies CAN@, rr, b) 2 CAN(n, r, b). Intuitiuely, retaining
more histories increases agents’ choices.

PROOF.

CAN(n, rr, b) = ((d I(6 x a) E t) 1 t E TFN(n, rr)]
r C rr, so TFN(n, rr) >_ TFN(n, r) (trivial),

hence

CAN(n, rr, b) > ({d 1 (a X 6) E t) 1 t E TFN(n, rr)] = CAN(n, r, b) Cl

ACKNOWLEDGMENTS

Present and former members of Bob Balzer’s specification group at IS1 have
collectively defined the rich context within which this work lies. Particular
thanks are due to Don Cohen, Neil Goldman, Jack Mostow, and Dave Wile for
relevant discussions and constructive comments on drafts of this paper. Meetings
of IFIP Working Group 2.1 have provided valued inspiration and feedback.
Thanks are also due to Sheila Coyazo for scrutinizing an earlier draft, and to the
referees for their suggestions.

REFERENCES

1. BALZER, R. Transformational implementation: An example. IEEE Trans. Softw. Eng. SE-7, 1
(1981), 3-14.

2. BALZER, R., AND GOLDMAN, N. Principles of good software specification and their implications
for specification languages. In Specification of Reliable Software. IEEE Computer Society, 1979,
58-67.

3. BALZER, R., GOLDMAN, N., AND WILE, D. Operational specification as the basis for rapid
prototyping. ACM S&oft Softw. Eng. Not. 7,5 (Dec. 1982), 3-16.

4. BARTL~, A. J., CHERRIE, B. H., LEHMAN, M. M., MACLEAN, R. I., AND POSTS, C. The role
of executable metric models in the programming process---final report. Tech. Rep., Dept. of
Computing and Control, Imperial College, London, 1984.

5. DARLINGTON, J. A synthesis of several algorithms. Acta Znf. 11,l (Dec. 1978), l-30.
6. FICKAS, S. F. Automating the transformational development of software. Ph.D. thesis, Univ. of

California, Irvine, 1982.
7. GREEN, C., LUCKHAM, D., BALZER, R., CHEATHAM, T., AND RICH, C. Report on a knowledge

based software assistant. Tech. Rap. RADC-TR-83-195, Rome Air Development Center, Aug.
1983.

8. HENNESSEY, M., AND MILNER, R. Algebraic laws for nondeterminism and concurrency. JACM
32,l (Jan. 1985), 137-161.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

234 l Martin S. Feather

9. HOARE, C. A. R. Communicating sequential processes. Commun. ACM 21. 8 (Aug. 1978),
666-677.

10. JACKSON, M. A. System Deuelopment. Prentice-Hall, Englewood Cliffs, N.J., 1983.
11. LONDON, P. E., AND FEATHER, M. S. Implementing specification freedoms. Sci. Comput.

Program. 2 (1982), 91-131.
12. MERLIN, P., BOCHMANN, G. V. On the construction of submodule specifications and commu-

nication protocols. ACM Trans. Program. Lung. Syst. 5, 1 (Jan. 1983), l-25.
13. MILNER, R. A caIculus of communicating systems. In Lecture Notes in Computer Science, 92.

Springer-Verlag, New York, 1980.
14. SWARTOUT, W., AND BALZER, R. On the inevitable intertwining of specification and implemen-

tation. Commun. ACM 25,7 (July 1982), 438440.
15. WILE, D. S. Program developments: Formal explanations of implementations. Commun ACM

26,11 (Nov. 1983), 902-911.
16. ZAVE, P. An operational approach to requirements specification for embedded systems. ZEEE

Trans. Softw. Eng. SE-8,3 (May 1982), 250-269.
17. ZAVE, P. The operational versus the conventional approach to software development. Commun.

ACM 27,2 (Feb. 1984), 104-118.

Received May 1985; revised May 1986; accepted June 1986

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 2, April 1987.

